Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113812, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377003

RESUMO

The ability of the mammalian brain to maintain spatial representations of external or internal information for short periods of time has been associated with sustained neuronal spiking and reverberatory neural network activity in the medial entorhinal cortex. Here, we show that conditional genetic deletion of netrin-1 or the netrin receptor deleted-in-colorectal cancer (DCC) from forebrain excitatory neurons leads to deficits in short-term spatial memory. We then demonstrate that conditional deletion of either netrin-1 or DCC inhibits cholinergic persistent firing and show that cholinergic activation of muscarinic receptors expressed by entorhinal cortical neurons promotes persistent firing by recruiting DCC to the plasma membrane. Together, these findings indicate that normal short-term spatial memory function requires the synergistic actions of acetylcholine and netrin-1.


Assuntos
Acetilcolina , Córtex Entorrinal , Animais , Acetilcolina/farmacologia , Netrina-1 , Prosencéfalo , Colinérgicos , Mamíferos
2.
J Pain ; 25(2): 545-556, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37742908

RESUMO

The adenosine triphosphate (ATP)-gated channel P2X7 is encoded by a gene enriched for common nonsynonymous variants. Many of these variants have functional cellular effects, and some have been implicated in chronic pain. In this study, we first systematically characterized all 17 common nonsynonymous variants using whole-cell patch clamp electrophysiology. Then, we analyzed these variants for statistical association with chronic pain phenotypes using both individual P2RX7 variants as predictors and cumulative allele counts of same-direction cellular effect in univariate models. Association and validation analyses were conducted in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) cohort (N = 3260) and in the Complex Persistent Pain Conditions (CPPC) cohort (N = 900), respectively. Our results showed an association between allele A of rs7958311 and an increased risk of chronic pelvic pain, with convergent evidence for contribution to fibromyalgia and irritable bowel syndrome, confirmed in a meta-analysis. This allelic variant produced a unique cellular phenotype: a gain-of-function in channel opening, and a loss-of-function in pore opening. A computational study using a 12-state Markov model of ATP binding to the P2X7 receptor suggested that this cellular phenotype arises from an increased ATP binding affinity and an increased open channel conductance combined with a loss of sensitization. Cumulative allele count analysis did not provide additional insights. In conclusion, our results go beyond reproducing association for rs7958311 with chronic pain and suggest that its unique combination of gain-of-function in channel and loss-of-function in pore activity may explain why it is likely the only common P2RX7 variant with contribution to chronic pain. PERSPECTIVE: This study characterizes all common P2RX7 variants using cellular assays and statistical association analyses with chronic pain, with Markov state modeling of the most robustly associated variant.


Assuntos
Dor Crônica , Receptores Purinérgicos P2X7 , Humanos , Trifosfato de Adenosina , Doença Crônica , Dor Crônica/genética , Medição da Dor , Receptores Purinérgicos P2X7/genética
3.
Sci Adv ; 9(44): eadh9603, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922363

RESUMO

Activation of the mechanistic target of rapamycin complex 1 (mTORC1) contributes to the development of chronic pain. However, the specific mechanisms by which mTORC1 causes hypersensitivity remain elusive. The eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is a key mTORC1 downstream effector that represses translation initiation. Here, we show that nociceptor-specific deletion of 4E-BP1, mimicking activation of mTORC1-dependent translation, is sufficient to cause mechanical hypersensitivity. Using translating ribosome affinity purification in nociceptors lacking 4E-BP1, we identified a pronounced translational up-regulation of tripartite motif-containing protein 32 (TRIM32), an E3 ubiquitin ligase that promotes interferon signaling. Down-regulation of TRIM32 in nociceptors or blocking type I interferon signaling reversed the mechanical hypersensitivity in mice lacking 4E-BP1. Furthermore, nociceptor-specific ablation of TRIM32 alleviated mechanical hypersensitivity caused by tissue inflammation. These results show that mTORC1 in nociceptors promotes hypersensitivity via 4E-BP1-dependent up-regulation of TRIM32/interferon signaling and identify TRIM32 as a therapeutic target in inflammatory pain.


Assuntos
Interferon Tipo I , Nociceptores , Camundongos , Animais , Nociceptores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Interferon Tipo I/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Front Pharmacol ; 14: 1289218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954846

RESUMO

Chronic pain is a significant global socioeconomic burden with limited long-term treatment options. The intractable nature of chronic pain stems from two primary factors: the multifaceted nature of pain itself and an insufficient understanding of the diverse physiological mechanisms that underlie its initiation and maintenance, in both the peripheral and central nervous systems. The development of novel non-opioidergic analgesic approaches is contingent on our ability to normalize the dysregulated nociceptive pathways involved in pathological pain processing. The anterior cingulate cortex (ACC) stands out due to its involvement in top-down modulation of pain perception, its abnormal activity in chronic pain conditions, and its contribution to cognitive functions frequently impaired in chronic pain states. Here, we review the roles of the monoamines dopamine (DA), norepinephrine (NE), serotonin (5-HT), and other neuromodulators in controlling the activity of the ACC and how chronic pain alters their signaling in ACC circuits to promote pathological hyperexcitability. Additionally, we discuss the potential of targeting these monoaminergic pathways as a therapeutic strategy for treating the cognitive and affective symptoms associated with chronic pain.

5.
Neurobiol Pain ; 13: 100120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816616

RESUMO

Despite the high prevalence of chronic pain as a disease in our society, there is a lack of effective treatment options for patients living with this condition. Gene therapies using recombinant AAVs are a direct method to selectively express genes of interest in target cells with the potential of, in the case of nociceptors, reducing neuronal firing in pain conditions. We designed a recombinant AAV vector expressing cargos whose expression was driven by a portion of the SCN10A (NaV1.8) promoter, which is predominantly active in nociceptors. We validated its specificity for nociceptors in mouse and human dorsal root ganglia and showed that it can drive the expression of functional proteins. Our viral vector and promoter package drove the expression of both excitatory or inhibitory DREADDs in primary human DRG cultures and in whole cell electrophysiology experiments, increased or decreased neuronal firing, respectively. Taken together, we present a novel viral tool that drives expression of cargo specifically in human nociceptors. This will allow for future specific studies of human nociceptor properties as well as pave the way for potential future gene therapies for chronic pain.

6.
Pain ; 164(4): 703-716, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973045

RESUMO

ABSTRACT: The anterior cingulate cortex (ACC) processes the affective component of pain, whereas the primary somatosensory cortex (S1) is involved in its sensory-discriminative component. Injection of morphine in the ACC has been reported to be analgesic, and endogenous opioids in this area are required for pain relief. Mu opioid receptors (MORs) are expressed in both ACC and S1; however, the identity of MOR-expressing cortical neurons remains unknown. Using the Oprm1-mCherry mouse line, we performed selective patch clamp recordings of MOR+ neurons, as well as immunohistochemistry with validated neuronal markers, to determine the identity and laminar distribution of MOR+ neurons in ACC and S1. We found that the electrophysiological signatures of MOR+ neurons differ significantly between these 2 areas, with interneuron-like firing patterns more frequent in ACC. While MOR+ somatostatin interneurons are more prominent in ACC, MOR+ excitatory neurons and MOR+ parvalbumin interneurons are more prominent in S1. Our results suggest a differential contribution of MOR-mediated modulation to ACC and S1 outputs. We also found that females had a greater density of MOR+ neurons compared with males in both areas. In summary, we conclude that MOR-dependent opioidergic signaling in the cortex displays sexual dimorphisms and likely evolved to meet the distinct function of pain-processing circuits in limbic and sensory cortical areas.


Assuntos
Giro do Cíngulo , Receptores Opioides mu , Masculino , Feminino , Camundongos , Animais , Giro do Cíngulo/metabolismo , Receptores Opioides mu/metabolismo , Morfina , Neurônios/metabolismo , Dor/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo
7.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579957

RESUMO

The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability and thus to the development of inflammatory pain. Here, we showed that tissue inflammation-induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain. Pharmacological activation of mTORC2 induced elongation and branching of nociceptor peripheral endings and caused long-lasting pain hypersensitivity. Conversely, nociceptor-specific deletion of the mTORC2 regulatory protein rapamycin-insensitive companion of mTOR (Rictor) prevented inflammation-induced elongation and branching of cutaneous nociceptive fibers and attenuated inflammatory pain hypersensitivity. Computational modeling demonstrated that mTORC2-mediated structural changes in the nociceptive terminal tree are sufficient to increase the excitability of nociceptors. Targeting mTORC2 using a single injection of antisense oligonucleotide against Rictor provided long-lasting alleviation of inflammatory pain hypersensitivity. Collectively, we showed that tissue inflammation-induced activation of mTORC2 causes structural plasticity of nociceptive free nerve endings in the epidermis and inflammatory hyperalgesia, representing a therapeutic target for inflammatory pain.


Assuntos
Dor Crônica , Nociceptores , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nociceptores/fisiologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirolimo
8.
Cell Rep ; 37(9): 109933, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852233

RESUMO

Pyramidal neurons in the anterior cingulate cortex (ACC), a prefrontal region involved in processing the affective components of pain, display hyperexcitability in chronic neuropathic pain conditions, and their silencing abolishes hyperalgesia. We show that dopamine, through D1 receptor (D1R) signaling, inhibits pyramidal neurons of mouse ACC by modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Activation of Gs-coupled D1R by dopamine induces the opening of HCN channels at physiological membrane potentials, driving a significant decrease in input resistance and excitability. Systemic L-DOPA in chronic neuropathic mice rescues HCN channel activity, normalizes pyramidal excitability in ACC, and blocks mechanical and thermal allodynia. Moreover, microinjection of a selective D1R agonist in the ACC relieves the aversiveness of ongoing neuropathic pain, while an ACC D1R antagonist blocks gabapentin- and lidocaine-evoked antinociception. We conclude that dopaminergic inhibition via D1R in ACC plays an analgesic role in physiological conditions and is decreased in chronic pain.


Assuntos
Dopamina/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Levodopa/farmacologia , Neuralgia/prevenção & controle , Canais de Potássio/metabolismo , Células Piramidais/efeitos dos fármacos , Receptores de Dopamina D1/agonistas , Animais , Dopaminérgicos/farmacologia , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Potenciais da Membrana , Neuralgia/etiologia , Neuralgia/metabolismo , Neuralgia/patologia , Canais de Potássio/genética , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley
9.
J Psychiatry Neurosci ; 46(3): E402-E414, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34077150

RESUMO

Background: Bipolar disorder is characterized by cyclical alternation between mania and depression, often comorbid with psychosis and suicide. Compared with other medications, the mood stabilizer lithium is the most effective treatment for the prevention of manic and depressive episodes. However, the pathophysiology of bipolar disorder and lithium's mode of action are yet to be fully understood. Evidence suggests a change in the balance of excitatory and inhibitory activity, favouring excitation in bipolar disorder. In the present study, we sought to establish a holistic understanding of the neuronal consequences of lithium exposure in mouse cortical neurons, and to identify underlying mechanisms of action. Methods: We used a range of technical approaches to determine the effects of acute and chronic lithium treatment on mature mouse cortical neurons. We combined RNA screening and biochemical and electrophysiological approaches with confocal immunofluorescence and live-cell calcium imaging. Results: We found that only chronic lithium treatment significantly reduced intracellular calcium flux, specifically by activating metabotropic glutamatergic receptor 5. This was associated with altered phosphorylation of protein kinase C and glycogen synthase kinase 3, reduced neuronal excitability and several alterations to synapse function. Consequently, lithium treatment shifts the excitatory­inhibitory balance toward inhibition. Limitations: The mechanisms we identified should be validated in future by similar experiments in whole animals and human neurons. Conclusion: Together, the results revealed how lithium dampens neuronal excitability and the activity of the glutamatergic network, both of which are predicted to be overactive in the manic phase of bipolar disorder. Our working model of lithium action enables the development of targeted strategies to restore the balance of overactive networks, mimicking the therapeutic benefits of lithium but with reduced toxicity.


Assuntos
Córtex Cerebral/citologia , Compostos de Lítio/uso terapêutico , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Cálcio/metabolismo , Células Cultivadas , Compostos de Lítio/administração & dosagem , Compostos de Lítio/farmacologia , Camundongos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo
10.
Brain Imaging Behav ; 15(5): 2406-2416, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33428113

RESUMO

Fibromyalgia (FM) is a generalized chronic pain condition whose pathophysiology is poorly understood, and both basic and translational research are needed to advance the field. Here we used the Sluka model to test whether FM-like pain in mice would produce detectable brain modifications using resting-state (rs) functional Magnetic Resonance Imaging (fMRI). Mice received intramuscular acid saline treatment, images were acquired at 7 T 5 days post-treatment, and pain thresholds tested 3 weeks post-scanning. Data-driven Independent Component Analysis revealed significant reduction of functional connectivity (FC) across several component pairs, with major changes for the Retrosplenial cortex (RSP) central to the default mode network, and to a lesser extent the Periaqueductal gray (PAG), a key pain processing area. Seed-to-seed analysis focused on 14 pain-related areas showed strongest FC reduction for RSP with several cortical areas (somatosensory, prefrontal and insular), and for PAG with both cortical (somatosensory) and subcortical (habenula, thalamus, parabrachial nucleus) areas. RSP-PAG FC was also reduced, and this decreased FC tended to be positively correlated with pain levels at individual subject level. Finally, seed-voxelwise analysis focused on PAG confirmed seed-to-seed findings and, also detected reduced PAG FC with the anterior cingulate cortex, increasingly studied in aversive pain effects. In conclusion, FM-like pain triggers FC alterations in the mouse, which are detected by rs-fMRI and are reminiscent of some human findings. The study reveals the causal fingerprint of FM-like pain in rodents, and indicates that both RSP and PAG connectional patterns could be suitable biomarkers, with mechanistic and translational value, for further investigations.


Assuntos
Dor Crônica , Fibromialgia , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Dor Crônica/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Vias Neurais/diagnóstico por imagem
11.
Mol Psychiatry ; 26(2): 629-644, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31911635

RESUMO

ATP signaling and surface P2X4 receptors are upregulated selectively in neurons and/or glia in various CNS disorders including anxiety, chronic pain, epilepsy, ischemia, and neurodegenerative diseases. However, the cell-specific functions of P2X4 in pathological contexts remain elusive. To elucidate P2X4 functions, we created a conditional transgenic knock-in P2X4 mouse line (Floxed P2X4mCherryIN) allowing the Cre activity-dependent genetic swapping of the internalization motif of P2X4 by the fluorescent mCherry protein to prevent constitutive endocytosis of P2X4. By combining molecular, cellular, electrophysiological, and behavioral approaches, we characterized two distinct knock-in mouse lines expressing noninternalized P2X4mCherryIN either exclusively in excitatory forebrain neurons or in all cells natively expressing P2X4. The genetic substitution of wild-type P2X4 by noninternalized P2X4mCherryIN in both knock-in mouse models did not alter the sparse distribution and subcellular localization of P2X4 but increased the number of P2X4 receptors at the surface of the targeted cells mimicking the pathological increased surface P2X4 state. Increased surface P2X4 density in the hippocampus of knock-in mice altered LTP and LTD plasticity phenomena at CA1 synapses without affecting basal excitatory transmission. Moreover, these cellular events translated into anxiolytic effects and deficits in spatial memory. Our results show that increased surface density of neuronal P2X4 contributes to synaptic deficits and alterations in anxiety and memory functions consistent with the implication of P2X4 in neuropsychiatric and neurodegenerative disorders. Furthermore, these conditional P2X4mCherryIN knock-in mice will allow exploring the cell-specific roles of P2X4 in various physiological and pathological contexts.


Assuntos
Ansiedade , Memória , Receptores Purinérgicos P2X4 , Sinapses , Animais , Ansiedade/genética , Técnicas de Introdução de Genes , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios , Receptores Purinérgicos P2X4/genética
12.
Neuron ; 106(6): 940-951.e4, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32298640

RESUMO

Itch and pain are distinct unpleasant sensations that can be triggered from the same receptive fields in the skin, raising the question of how pruriception and nociception are coded and discriminated. Here, we tested the multimodal capacity of peripheral first-order neurons, focusing on the genetically defined subpopulation of mouse C-fibers that express the chloroquine receptor MrgprA3. Using optogenetics, chemogenetics, and pharmacology, we assessed the behavioral effects of their selective stimulation in a wide variety of conditions. We show that metabotropic Gq-linked stimulation of these C-afferents, through activation of native MrgprA3 receptors or DREADDs, evokes stereotypical pruriceptive rather than nocifensive behaviors. In contrast, fast ionotropic stimulation of these same neurons through light-gated cation channels or native ATP-gated P2X3 channels predominantly evokes nocifensive rather than pruriceptive responses. We conclude that C-afferents display intrinsic multimodality, and we provide evidence that optogenetic and chemogenetic interventions on the same neuronal populations can drive distinct behavioral outputs.


Assuntos
Channelrhodopsins/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Neurônios Aferentes/metabolismo , Nociceptividade/fisiologia , Dor/metabolismo , Prurido/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Trifosfato de Adenosina , Animais , Cloroquina , Gânglios Espinais/metabolismo , Peptídeo Liberador de Gastrina/metabolismo , Luz , Camundongos , Neurônios Aferentes/fisiologia , Optogenética , Receptores Opioides/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
13.
Mol Brain ; 13(1): 56, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264905

RESUMO

The receptor deleted in colorectal cancer (DCC) and its ligand netrin-1 are essential for axon guidance during development and are expressed by neurons in the mature brain. Netrin-1 recruits GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and is critical for long-term potentiation (LTP) at CA3-CA1 hippocampal Schaffer collateral synapses, while conditional DCC deletion from glutamatergic neurons impairs hippocampal-dependent spatial memory and severely disrupts LTP induction. DCC co-fractionates with the detergent-resistant component of postsynaptic density, yet is enriched in axonal growth cones that differentiate into presynaptic terminals during development. Specific presynaptic and postsynaptic contributions of DCC to the function of mature neural circuits have yet to be identified. Employing hippocampal subregion-specific conditional deletion of DCC, we show that DCC loss from CA1 hippocampal pyramidal neurons resulted in deficits in spatial memory, increased resting membrane potential, abnormal dendritic spine morphology, weaker spontaneous excitatory postsynaptic activity, and reduced levels of postsynaptic adaptor and signaling proteins; however, the capacity to induce LTP remained intact. In contrast, deletion of DCC from CA3 neurons did not induce detectable changes in the intrinsic electrophysiological properties of CA1 pyramidal neurons, but impaired performance on the novel object place recognition task as well as compromised excitatory synaptic transmission and LTP at Schaffer collateral synapses. Together, these findings reveal specific pre- and post-synaptic contributions of DCC to hippocampal synaptic plasticity underlying spatial memory.


Assuntos
Envelhecimento/metabolismo , Receptor DCC/metabolismo , Hipocampo/metabolismo , Consolidação da Memória , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Espinhas Dendríticas/metabolismo , Deleção de Genes , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células Piramidais/metabolismo , Memória Espacial
14.
15.
Neuron ; 103(1): 5-7, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31271755

RESUMO

In this issue of Neuron, Pagani et al. (2019) find that itch signaling occurs only when GRP neurons fire action potentials in bursts. This enables GRP release and the activation of GRPR neurons, which help carry the itch signal to the brain.


Assuntos
Prurido , Medula Espinal , Potenciais de Ação , Peptídeo Liberador de Gastrina , Humanos , Neurônios
16.
Front Cell Neurosci ; 13: 121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024257

RESUMO

P2X receptors constitute a gene family of cation channels gated by extracellular ATP. They mediate fast ionotropic purinergic signaling in neurons and non-excitable cell types in vertebrates. The highly calcium-permeable P2X4 subtype has been shown to play a significant role in cardiovascular physiology, inflammatory responses and neuro-immune communication. We previously reported the discovery of a P2X4-selective antagonist, the small organic compound BX430, with submicromolar potency for human P2X4 receptors and marked species-dependence (Ase et al., 2015). The present study investigates the molecular basis of P2X4 inhibition by the non-competitive blocker BX430 using a structural and functional approach relying on mutagenesis and electrophysiology. We provide evidence for the critical contribution of a single hydrophobic residue located in the ectodomain of P2X4 channel subunits, Ile312 in human P2X4, which determines blockade by BX430. We also show that the nature of this extracellular residue in various vertebrate P2X4 orthologs underlies their specific sensitivity or resistance to the inhibitory effects of BX430. Taking advantage of high-resolution crystallographic data available on zebrafish P2X4, we used molecular dynamics simulation to model the docking of BX430 on an allosteric binding site around Ile315 (zebrafish numbering) in the ectodomain of P2X4. We also observed that the only substitution I312D (human numbering) that renders P2X4 silent by itself has also a profound silencing effect on all other P2X subtypes tested when introduced at homologous positions. The generic impact of this aspartate mutation on P2X function indicates that the pre-TM2 subregion involved is conserved functionally and defines a novel allosteric inhibitory site present in all P2X receptor channels. This conserved structure-channel activity relationship might be exploited for the rational design of potent P2X subtype-selective antagonists of therapeutic value.

17.
J Neurophysiol ; 121(2): 662-671, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427758

RESUMO

The role of the N-methyl-d-aspartate receptor (NMDAr) as a contributor to maladaptive neuroplasticity underlying the maintenance of chronic pain is well established. Agmatine, an NMDAr antagonist, has been shown to reverse tactile hypersensitivity in rodent models of neuropathic pain while lacking the side effects characteristic of global NMDAr antagonism, including sedation and motor impairment, indicating a likely subunit specificity of agmatine's NMDAr inhibition. The present study assessed whether agmatine inhibits subunit-specific NMDAr-mediated current in the dorsal horn of mouse spinal cord slices. We isolated NMDAr-mediated excitatory postsynaptic currents (EPSCs) in small lamina II dorsal horn neurons evoked by optogenetic stimulation of Nav1.8-containing nociceptive afferents. We determined that agmatine abbreviated the amplitude, duration, and decay constant of NMDAr-mediated EPSCs similarly to the application of the GluN2B antagonist ifenprodil. In addition, we developed a site-specific knockdown of the GluN2B subunit of the NMDAr. We assessed whether agmatine and ifenprodil were able to inhibit NMDAr-mediated current in the spinal cord dorsal horn of mice lacking the GluN2B subunit of the NMDAr by analysis of electrically evoked EPSCs. In control mouse spinal cord, agmatine and ifenprodil both inhibited amplitude and accelerated the decay kinetics. However, agmatine and ifenprodil failed to attenuate the decay kinetics of NMDAr-mediated EPSCs in the GluN2B-knockdown mouse spinal cord. The present study indicates that agmatine preferentially antagonizes GluN2B-containing NMDArs in mouse dorsal horn neurons. NEW & NOTEWORTHY Our study is the first to report that agmatine preferentially antagonizes the GluN2B receptor subunit of the N-methyl-d-aspartate (NMDA) receptor in spinal cord. The preferential targeting of GluN2B receptor is consistent with the pharmacological profile of agmatine in that it reduces chronic pain without the motor side effects commonly seen with non-subunit-selective NMDA receptor antagonists.


Assuntos
Agmatina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato/agonistas , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/fisiologia
18.
Cell Rep ; 25(1): 168-182.e6, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282026

RESUMO

Dynamic trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPARs) to synapses is critical for activity-dependent synaptic plasticity underlying learning and memory, but the identity of key molecular effectors remains elusive. Here, we demonstrate that membrane depolarization and N-methyl-D-aspartate receptor (NMDAR) activation triggers secretion of the chemotropic guidance cue netrin-1 from dendrites. Using selective genetic deletion, we show that netrin-1 expression by excitatory neurons is required for NMDAR-dependent long-term potentiation (LTP) in the adult hippocampus. Furthermore, we demonstrate that application of exogenous netrin-1 is sufficient to trigger the potentiation of excitatory glutamatergic transmission at hippocampal Schaffer collateral synapses via Ca2+-dependent recruitment of GluA1-containing AMPARs, promoting the maturation of immature or nascent synapses. These findings identify a central role for activity-dependent release of netrin-1 as a critical effector of synaptic plasticity in the adult hippocampus.


Assuntos
Hipocampo/metabolismo , Netrina-1/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciação de Longa Duração/fisiologia , Camundongos , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
19.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225353

RESUMO

Leucine-rich glioma-inactivated protein 1 (LGI1) is a secreted neuronal protein and a Nogo receptor 1 (NgR1) ligand. Mutations in LGI1 in humans causes autosomal dominant lateral temporal lobe epilepsy and homozygous deletion of LGI1 in mice results in severe epileptic seizures that cause early postnatal death. NgR1 plays an important role in the development of CNS synapses and circuitry by limiting plasticity in the adult cortex via the activation of RhoA. These relationships and functions prompted us to examine the effect of LGI1 on synapse formation in vitro and in vivo. We report that application of LGI1 increases synaptic density in neuronal culture and that LGI1 null hippocampus has fewer dendritic mushroom spines than in wild-type (WT) littermates. Further, our electrophysiological investigations demonstrate that LGI1 null hippocampal neurons possess fewer and weaker synapses. RhoA activity is significantly increased in cortical cultures derived from LGI1 null mice and using a reconstituted system; we show directly that LGI1 antagonizes NgR1-tumor necrosis factor receptor orphan Y (TROY) signaling. Our data suggests that LGI1 enhances synapse formation in cortical and hippocampal neurons by reducing NgR1 signaling.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptor Nogo 1/metabolismo , Proteínas/fisiologia , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Embrião de Mamíferos , Epilepsia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Proteína rhoA de Ligação ao GTP
20.
Sci Rep ; 8(1): 3263, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459734

RESUMO

The sensory neuron of Aplysia californica participates in several forms of presynaptic plasticity including homosynaptic depression, heterosynaptic depression, facilitation and the reversal of depression. The calcium channel triggering neurotransmitter release at most synapses is CaV2, consisting of the pore forming α1 subunit (CaV2α1), and auxiliary CaVß, and CaVα2δ subunits. To determine the role of the CaV2 channel in presynaptic plasticity in Aplysia, we cloned Aplysia CaV2α1, CaVß, and CaVα2δ and over-expressed the proteins in Aplysia sensory neurons (SN). We show expression of exogenous CaV2α1 in the neurites of cultured Aplysia SN. One proposed mechanism for heterosynaptic depression in Aplysia is through inhibition of CaV2. Here, we demonstrate that heterosynaptic depression of the CaV2 calcium current is inhibited when a channel with a Y-F mutation at the conserved Src phosphorylation site is expressed, showing the strong conservation of this mechanism over evolution. We also show that the Y-F mutation reduces heterosynaptic inhibition of neurotransmitter release, highlighting the physiological importance of this mechanism for the regulation of synaptic efficacy. These results also demonstrate our ability to replace endogenous CaV2 channels with recombinant channels allowing future examination of the structure function relationship of CaV2 in the regulation of transmitter release in this system.


Assuntos
Aplysia , Canais de Cálcio/metabolismo , Plasticidade Neuronal , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Células Receptoras Sensoriais/fisiologia , Substituição de Aminoácidos , Animais , Canais de Cálcio/genética , Células Cultivadas , Clonagem Molecular , Análise Mutacional de DNA , Motivos EF Hand , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Células Receptoras Sensoriais/enzimologia , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...